Inhibition of Human Neutrophil Elastase. 3. An Orally Active Enol Acetate Prodrug[†]

Joseph P. Burkhart,* Jack R. Koehl, Shujaath Mehdi, Sherrie L. Durham, Michael J. Janusz, Edward W. Huber, Michael R. Angelastro, Shyam Sunder, William A. Metz, Patrick W. Shum, Teng-Man Chen, Philippe Bey, Robert J. Cregge, and Norton P. Peet

Marion Merrell Dow Research Institute, 2110 East Galbraith Road, Cincinnati, Ohio 45215

Received August 29, 1994[®]

Several analogs of N-[4-(4-morpholinylcarbonyl)benzoyl]-L-valyl-N-[3,3,4,4,4-pentafluoro-1-(1methylethyl)-2-oxobutyl]-L-prolinamide (1), in which the chiral center of the P₁ residue has been eliminated, were synthesized and tested as inhibitors of human neutrophil elastase (HNE). Observations made during the course of this work led to the development of a single-step, stereoselective synthesis of *E*-enol acetate derivatives from HNE inhibitors containing a mixture of epimers at P₁. In vitro studies, in the presence of added esterase, and ¹⁹F NMR studies, in biological media, indicated that the *E*-enol acetate derivatives should act as prodrugs *in vivo*. The ED₅₀ value for (*E*)-N-[4-(4-morpholinylcarbonyl)benzoyl]-L-valyl-N-[2-(acetyloxy)-3,3,4,4,4pentafluoro-1-(1-methylethyl)-1-butenyl]-L-prolinamide (**20**), when administered orally in the hamster lung hemorrhage model, was 9 mg/kg.

Introduction

Human neutrophil elastase (HNE) (EC 3.4.21.37), a polyglycosylated, basic serine protease, is released from polymorphonuclear leukocytes by inflammatory stimuli. HNE is thought to contribute to the pathogenesis of emphysema,¹ cystic fibrosis,² adult respiratory distress syndrome (ARDS),³ and rheumatoid arthritis.⁴ Therefore, inhibition of HNE may attenuate the progression of these disease states, and synthetic inhibitors of HNE, both peptidic and nonpeptidic in nature, have been pursued by researchers in the area.⁵

In part 2 of this series,⁶ we reported that tripeptidyl pentafluoroethyl ketones, exemplified by 1 (Figure 1), are orally active inhibitors of HNE, and the effect of variations in the N-protecting group (P_G) portion of the inhibitor (see Figure 2) has been described. We also noted, as have others,^{7,8} the propensity for fluorinated ketone inhibitors to epimerize at the chiral center α to the ketone, which leads to a mixture of diastereomers. As a result, the development of an inhibitor as a diastereomeric mixture is a practice common to the area (for example, compounds 2⁹ and 3;⁷ see Figure 1), and indeed, the last step of our synthetic sequence for 1 is an epimerization step which leads to a ca. 1:1 equilibrium mixture of diastereomers.

In an effort to determine if this diastereomeric mixture could be circumvented, we investigated structural changes to the P_1 portion¹⁰ of the fluorinated ketone which would lead to a single isomer as the

inhibitory entity. Thus, the P_1 dehydrovaline (4), α, α dimethylglycine (5), and glycine (6) analogs of 1 (see Figure 3) were synthesized and evaluated. Additionally, the high degree of enolic character observed for 6 prompted us to investigate the potential for a stereoselective synthesis of an enol acetate prodrug which culminated in the synthesis of a number of *E*-enol acetate derivatives of 1 and related trifluoromethyl ketones.

Chemistry

N-t-Boc-L-valyl-L-proline was coupled to dehydrovaline methyl ester hydrochloride (7) using isobutyl chloroformate (IBCF) and *N*-methylmorpholine (NMM) to

© 1995 American Chemical Society

[†] Abbreviations: HNE, human neutrophil elastase; ARDS, adult respiratory distress syndrome; P_G, N-protecting group; IBCF, isobutyl chloroformate; NMM, N-methylmorpholine; EDC, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride; DMAP, 4-(dimethylamino)pyridine; NOE, nuclear Overhauser effect; USP, United States Pharmacopeia; HPLC, high-performance liquid chromatography; BAL, bronchoaveolar lavage; BOC, butyloxycarbonyl; A_G, activating group. [®] Abstract published in Advance ACS Abstracts, January 1, 1995.

Figure 2. Generalized structure of tripeptidyl elastase inhibitors $(P_G-P_3-P_2-P_1-A_G)$.

5 R = $-CH_3$, PG = $-CO_2tBu$

Figure 3.

Scheme 1. Synthesis of 4^a

^a Reagents: (a) N-t-Boc-L-Val-L-Pro-OH, IBCF, NMM; (b) CF₃CF₂I, MeLi-LiBr; (c) HCl(g), EtOAc; (d) 4-(4-morpholinylcarbonyl)benzoyl chloride, NMM.

give 8 (Scheme 1). Treatment of 8 with (pentafluoroethyl)lithium, generated *in situ* from pentafluoroethyl iodide and methyllithium-lithium bromide complex,¹¹ gave ketone 9. Deprotection, using hydrogen chloride in ethyl acetate, yielded amine hydrochloride 10 which was treated with 4-(4-morpholinylcarbonyl)benzoyl chloride in the presence of NMM to give 4.

N-t-Boc-2-amino-2-methylpropanoic acid (11) was coupled with *N*,*O*-dimethylhydroxylamine hydrochloride using the mixed carbonic-carboxylic acid method to yield Weinreb amide¹² 12 (Scheme 2). Treatment of 12

 $\stackrel{a}{\longrightarrow} 12 R = \cdot N(OCH_3)CH_3$ $\stackrel{b}{\longrightarrow} 13 R = \cdot CF_2CF_3$

 a Reagents: (a) EDC, DMAP, NMM, HCl·HN(OCH_3)CH_3; (b) CF_3CF_2I, MeLi·LiBr; (c) HCl(g), EtOAc; (d) N-t-Boc-L-Val-L-Pro-OH, IBCF, NMM.

Scheme 3. Synthesis of 6^a

^a Reagents: (a) EDC, NMM, HCl·HN(OCH₃)CH₃; (b) CF₃CF₂I, MeLi-LiBr; (c) HCl(g), EtOAc; (d) N-t-Boc-L-Val-L-Pro-OH, IBCF, NMM; (e) 4-(4-morpholinylcarbonyl)benzoyl chloride, NMM.

with (pentafluoroethyl)lithium generated ketone 13, which was deprotected with hydrogen chloride in ethyl acetate to give amine hydrochloride 14. Coupling of N-t-Boc-L-valyl-L-proline to 14 gave 5.

N-t-Boc-glycine (15) was converted to the Weinreb amide 16 (Scheme 3) using 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC), 4-(dimethylamino)pyridine (DMAP), and NMM in the presence of N,O-dimethylhydroxylamine hydrochloride. Treatment of 16 with (pentafluoroethyl)lithium gave ketone 17. Deprotection and coupling of the resulting amine hydrochloride with *N-t*-Boc-L-valyl-L-proline yielded ketone 18. Removal of the *N-t*-Boc protecting group from 18 followed by treatment of the resultant amine hydrochloride with 4-(4-morpholinylcarbonyl)benzoyl chloride and NMM provided 6. Additionally, the enol benzoate 19^{13} was formed as a side product of the reaction.

Prompted by the enolic character of **6** and the isolation of the enol benzoate side product **19**, we decided to investigate the possibility of stereoselectively generating a single enol ester from the diastereomeric mixture of pentafluoroethyl ketones (1). We now wish to report that, under suitable conditions (Table 1), **1** could be converted stereoselectively (E:Z = 93:1 for crude material by ¹⁹F NMR) to the *E*-enol acetate **20** (Scheme 4) in high yield. Substitution of propionic anhydride and isobutyric anhydride for acetic anhydride gave **21** and **22**, respectively. However, substitution of pivaloyl anhydride failed to give the corresponding pivaloyl enol ester. Furthermore, by increasing the reaction temperature (Table 2), the ratio of the corresponding Z-enol Inhibition of Human Neutrophil Elastase. 3

Scheme 4. Synthesis of Enol Acetate Derivatives of 1^{a}

23

^a Reagents: (a) (RCO)₂O, Et₃N, DMAP, CH₂Cl₂, -20 °C; (b) Ac₂O, Et₃N, DMAP, CH₂Cl₂, reflux.

Scheme 5. Synthesis of E-Enol Acetate 25^a

^a Reagents: (a) Ac₂O, Et₃N, DMAP, CH₂Cl₂, -20 °C.

 Table 1. Optimization of Reaction Conditions for the

 Conversion of Pentafluoroethyl Ketone 1 to E-Enol Acetate 20

$$1 \rightarrow \frac{20}{E\text{-isomer}} + \frac{23}{Z\text{-isomer}}$$

			percent of crude product by ¹⁹ F NMR		
reagents ^a	temp (°C)	time (h)	20	2 3	recovered 1^b
A,B A,B,C A,B,C A.B,C	$rt rt -20 \rightarrow rt -20$	48 2 0.5, 0.5 2	5 57 63 93	7 23 15 1	88 2 22 22

 a Reagents: A, Ac₂O; B, Et₃N; C, DMAP. b 1:1 mixture of two diastereomers.

acetate **23** to *E*-enol acetate **20** could be increased to a degree sufficient to allow isolation of **23**, after careful chromatography.

Extension of this methodology to trifluoromethyl ketones proved problematic. Treatment of 24 with acetic anhydride (Scheme 5), under the optimal conditions developed for the conversion of 1 to enol acetate 20, gave a mixture of the desired *E*-enol acetate 25, the corresponding *Z*-enol acetate (E:Z = 21:1 for crude material by ¹⁹F NMR), and a chromatographically troublesome 2:1 mixture of two diastereometic β -lac-

Table 2. Effect of Temperature on the Ratio of *E*- and *Z*-Enol

 Acetates Formed during the Conversion of 1

L		20	+	23
	E	-isomer		Z-isomer

	temp	per	ratio of		
solvent	(°C)	20	2 3	recovered 1	E:Z
CH ₂ Cl ₂	-20	93	1	2	93:1
CH_2Cl_2	rt	57	23	2	2.5:1
CH_2Cl_2	40	29	39	2	1:1.3
ClCH ₂ CH ₂ Cl	83	17	31	19	1:1.8

tones (26).¹⁴ Subsequent investigation (Table 3) showed that reaction of 24 at 0 °C with acetic anhydride in pyridine gave the desired *E*-enol acetate 25 in a stereoselective manner (E:Z = 31:1 for crude material by ¹⁹F NMR) with less than 1% of β -lactones 26 present in the crude material.¹⁵ Similarly, treatment of trifluoromethyl ketones 27, 28, and 2 with acetic anhydride under these conditions gave *E*-enol acetates 29–31, respectively (Scheme 6).

Results and Discussion

Determination of *E***- and** *Z***-Isomers**. The olefin geometry assignments of the enol acetates were made

Table 3. Optimization of Reaction Conditions for the Conversion of Trifluoromethyl Ketone 24 to 25

 $24 \rightarrow 25$

E-1somer								
reaction pe					percent of crude	percent of crude product by ¹⁹ F NMR		
exp	reagents ^a	solvent	temp (°C)	time (h)	25^b	Z-isomer ^{b,c}	26 ^b	recovered 24^b
1	A,B,C	CH_2Cl_2	-20	2	65	<3	20	6
2	A,B,C	CH_2Cl_2	-44	2	8	0	77	15
3	A,B,D	CH_2Cl_2	-20	1.25	57	<2	35	3
4	A,B	CH_2Cl_2	-20	2	61	<2	31	<2
5	A,B	CH_3CN	-20	2	75	<2	7	12
6	E,B	CH ₃ CN	-20	2	0	0	0	100
7	A,F	CH ₃ CN	$-20 \rightarrow rt$	2, 4.5	9	<1	0	85
8	Α	C_5H_5N	rt	5	83	6	<1	9
9	Α	C_5H_5N	0	25	94	<3	<1	<1
10	Α	C_5H_5N	$40 \rightarrow rt$	1, 18	83	13	<1	<1

+ Z-isomer + 26

^a Reagents: A, Ac₂O; B, DMAP; C, Et₃N; D, NMM; E, AcCl; F, C₅H₅N. ^b The ¹⁹F NMR shift position (in CDCl₃, reported in ppm from CFCl₃) for each compound is as follows: compound **24**, -76.82 and -76.84; compound **25**, -66.0; Z-isomer, -61.3; compound **26**, -76.0 and -76.1 ^c The structure of the Z-isomer was assigned by analogy to **23** and ¹H, ¹⁹F, and ¹H - [¹⁹F] NOE experiments on the mixture obtained from experiment 10.

 a Reagents: (a) Ac_2O, DMAP, CH_3CN, -20 °C; (b) Ac_2O, pyridine, 0 °C.

Figure 4. Top: ${}^{1}H - [{}^{19}F]$ NOE difference spectrum of 20. Bottom: Off-resonance spectrum. Double arrow represents NOE observed.

using ¹H-observed, ¹⁹F-irradiated (¹H - [¹⁹F]) NOE difference spectroscopy. These heteronuclear steadystate NOE experiments result in signal enhancements of those protons in close spatial proximity (i.e., cis) to the irradiated fluorine atoms. Typical NOE difference

Figure 5. Top: ${}^{1}H-[{}^{19}F]$ NOE difference spectrum of 23. Bottom: Off-resonance spectrum. Double arrow represents NOE observed.

spectra obtained for **20** and **23** are shown in Figures 4 and 5. In these experiments the CF_2 groups were irradiated with sufficient power for complete saturation. Unlike ${}^{1}H - [{}^{1}H]$ NOE difference experiments, with ${}^{1}H$ [¹⁹F] experiments there are no problems with incomplete saturation since saturation of nearby signals is typically not an issue. For 20, a large (ca. 5%) NOE was observed to the amide proton, which is indicative of the *cis* relationship between the CF_2 and NH groups. No similar NOE was observed to the *trans* methine proton. Conversely, for 23, no NOE was observed between the CF_2 and the NH groups but instead a 9% enhancement was observed to the cis methine signal upon irradiation of the CF_2 group. These results are consistent with the olefin geometries shown. Similar experiments for 29-31 also confirmed the E-olefin geometry assignments.

In Vitro. The *in vitro* testing results are summarized in Table 4. Compounds 4-6 are more than 2 orders of magnitude less potent as inhibitors of HNE than compound 1. The poor affinity displayed by 4 is interesting in light of the previously reported⁶ K_i values for the individual diastereomers of 1 (17 and 74 nM)

 Table 4. In Vitro Inhibitory Activity

compd	$K_{ m i}({ m nM})^a$	$K_{i} (nM)^{b}$ in the presence of pig liver esterase
1	25 ± 1^{c}	
2	0.5^d	
4	8000 ± 250	
5	>500000 ^{b.e}	
6	150000 ± 260	
20	>2000 ^b	25
2 1		25
22		25
2 3		ndh ^f
27	190 ± 34	
28	12 ± 1	
29	6300 ^b	150
30		16
31	320^{b}	3

^a Value expressed as mean \pm SDM for determinations at three inhibitor concentrations, unless otherwise noted. ^b Value for a single determination. ^c Value obtained from a double-reciprocal plot of 1/v vs 1/[S] at different inhibitor concentrations. ^d Reference 9. ^e K_i = 55 \pm 2 nM for N-t-Boc-Val-Pro-Val-CF₂CF₃. ^f ndh = no detectable hydrolysis by pig liver esterase during the standard assay time period, determined by bioassay.

which showed only a modest stereochemical preference at P_1 for L versus D. This result may reflect steric constraints. In addition, a change in the electrophilicity of the ketone carbonyl, brought about by conjugation to the introduced double bond, may be reflected in the K_i value for 4. The lack of affinity observed for 6 is in line with a recently reported⁷ K_i value for the α, α dimethylglycine analog of a trifluoromethyl ketone and may reflect a combination of the following factors: (a) the lack of a P_1 side chain to interact with a hydrophobic pocket at the S_1 subsite of HNE and (b) the distinctly enolic character of the P_1 ketone observed for 6, which has not been observed for any other compound in this or any previous series^{6,16,17} of compounds.

The *E*-enol acetate **20** also showed poor affinity for HNE. However, in the presence of added esterase (porcine liver esterase), compound **20** displayed a final K_i value of 25 nM, which was identical to the K_i value measured for 1, indicating its prodrug character (Figure 6). Surprisingly, the corresponding *Z*-enol acetate **23** failed to generate 1 at a significant rate in the presence of added esterase. The *E*-enol acetate derivatives **21** and **22** were synthesized to determine if the rate of cleavage by esterase could be modified by adding steric bulk to the ester portion of the molecule. However, **21**

Table 5. In Vivo Inhibitory Activity of Selected Compounds in the Hamster^a

compd	$ED_{50} (mg/kg)$	compd	$ED_{50}\left(mg/kg\right)$
1	15	28	>50
2	>50	30	>75
20	9	31	>50

^a Various concentrations of compound were administered orally to hamsters 30 min before intratracheal instillation of HNE (25 μ g). The ED₅₀ was extrapolated from the dose-response curves and was statistically significant at the $p \leq 0.05$ level compared to animals that received vehicle (po) and HNE (it) for 1 and **20**. Six to fourteen hamsters were used for each concentration of compound.

and **22** showed no apparent difference in the rate of ester cleavage in the presence of porcine liver esterase when compared to **20**.

To determine whether *E*-enol acetate derivatives of trifluoromethyl ketones would also function as prodrugs, compounds 29-31 were synthesized and tested *in vitro* against HNE. Again, in the presence of esterase, compounds 29-31 showed final K_i values identical to the corresponding trifluoromethyl ketone precursors (27, 28, and 2, respectively), indicating their prodrug status.

In Vivo. The in vivo activity of selected compounds, when administered orally (po), was determined in hamsters using the HNE-induced pulmonary hemorrhage model,⁶ and the results are summarized in Table 5. E-Enol acetate 20 showed an ED_{50} of 9 mg/kg po compared to an ED_{50} of 15 mg/kg for 1 when tested in this model. Thus, 20 appears to be acting as a prodrug for 1 in vivo. As previously reported,⁶ the trifluoromethyl ketone 2 showed no significant oral activity at the doses tested, and similar results were obtained for trifluoromethyl ketone 28. The corresponding E-enol acetates (31 and 30, respectively) were tested to determine whether pharmacological parameters had been sufficiently altered by this structural change to allow oral activity. Unfortunately, 30 and 31 also failed to show oral activity at the doses tested ($ED_{50} > 75 \text{ mg/kg}$ and $ED_{50} > 50$ mg/kg, respectively).

Conversion of Enol Acetates in Biological Media. The conversion of enol acetates 20 and 23 to parent ketone 1 was examined by ¹⁹F NMR spectroscopy in USP-simulated gastric fluid (pH = 1.2), USP-simulated intestinal fluid (pH = 7.5), and human blood plasma. The results are shown in Table 6. The product of these conversion studies was identified as 1 on the basis of

Figure 6. In vitro time course showing **20** in the presence of added pig liver esterase. Legend: \bigtriangledown , HNE + HNE substrate (0.2 mM); \bigcirc , HNE + HNE substrate (0.2 mM) + esterase; \diamondsuit , HNE + HNE substrate (0.2 mM) + esterase + **20** (66 nM).

 Table 6. Enol Acetate Conversion to the Corresponding

 Ketones in Biological Media

biological medium	compd	temp (°C)	half-life
USP-simulated gastric fluid	20	50	no ^a
-	30	50	41 h
USP-simulated intestinal fluid	20	50	3.1 h
	20	37	7.3 h
	2 3	37	6.6 h
	30	37	2.9 h
	31	50	1.2 h
human blood plasma	20	37	$25 \min$
-	2 3	37	40 min
	30	37	15 min
	31	37	10 min

^{*a*} no = conversion not observed.

the observation of signals consistent with a 1:1 mixture of diastereomers at the appropriate chemical shifts, the normal ratio of ketone to hydrated ketone, and spiking studies. Identical studies were conducted to monitor the conversion of *E*-enol acetate **30** to parent ketone **28** and of *E*-enol acetate **31** to ketone **2**.¹⁸

As can be seen in Table 6, in gastric fluid (pH = 1.2) no conversion to 1 was observed from 20, even after 12 h at 50 °C. Compound 30 showed very slow (half-life of 41 h) conversion to 28 under these conditions.

The acid stability of the enol acetates arises from α -substitution by a fluorinated carbon. Protonation of the carbon-carbon double bond, leading to a carbonium ion adjacent to the fluorinated carbon, would be disfavored due to the electronegativity of the fluorines. From these studies, minimal conversion of enol acetate to ketone would be expected in the stomach.

In intestinal fluid (pH = 7.5), the half-lives for the conversion of E- and Z-isomers 20 and 23 to pentafluoroethyl ketone 1 were nearly identical (7.3 versus 6.6 h, respectively) at 37 °C. The conversions of E-enol acetates 30 and 31 to trifluoromethyl ketones 28 and 2, respectively, were decidedly faster in this biological media. The rate enhancement observed for the alkaline hydrolysis of the enol acetate derivative upon replacement of the pentafluoroethyl by a trifluoromethyl substituent presumably results from the greater stabilization of the initially formed enolate by the more electronegative trifluoromethyl group. However, differences in steric bulk may also be playing a role. A rate enhancement was also observed for the conversion of 20 when the temperature was raised to 50 °C.

Much shorter half-lives were observed for the inhibitors in human blood plasma. For **20**, **23**, **30**, and **31**, the half-lives ranged from 10 to 40 min at 37 °C. Since the pH's of blood plasma and intestinal fluid are similar, the presence of esterases in plasma explains the rate enhancement observed in that medium. Additionally, the esterases present in human blood plasma apparently cleave a broader spectrum of esters than the pig liver esterase used in the *in vivo* experiments. This would account for the observed cleavage of **23** to **1** in human blood plasma and the lack of cleavage in the presence of pig liver esterase.

Lipophilicity and Oral Activity. A relationship between the lipophilicity of a compound and its retention time as determined by reversed-phase highperformance liquid chromatography (HPLC) has been proposed.¹⁹ Since lipophilicity is a factor in cell membrane permeability, absorption through the gut wall should reflect the lipophilic nature of the compound being tested. Our earlier report⁶ indicated an apparent correlation between relative retention time and oral activity for a series of pentafluoroethyl ketones. A window of relative retention time (0.8-1.0 with compound 1 having a value of 1.00 in the HPLC system) contained all of the orally active compounds in that study. A similar analysis of the compounds in this study was undertaken. Compound 20, which has a relative time of 0.98, showed oral activity. By comparison, *E*-enol acetates 30 and 31, with relative retention times of 0.66 and 0.39, respectively, were shown to be inactive upon po administration at the doses tested.

Summary

We have shown that a diastereomeric mixture of fluorinated ketone inhibitors can be stereoselectively converted to a single *E*-enol acetate derivative and that this derivative, in the presence of an esterase, is cleaved to the active inhibitors *in vitro*. Furthermore, compound **20** has been shown to be a potent inhibitor of HNE in the HNE-induced pulmonary hemorrhage model when administered orally in the hamster. This methodology thus allows for the conversion of a diastereomeric mixture to a single isomer drug entity, which then functions as an orally active prodrug of the inhibitor mixture. Future reports in this series will discuss the results of P₂, P₃, and A_G (Figure 2) modifications.

Experimental Section

General Methods and Materials. Melting points were determined with a Thomas-Hoover capillary melting point apparatus and are uncorrected. TLC analyses were performed with Merck DC-F254 or Analtech GHLF silica gel plates, with visualization by I_2 , alkaline permanganate, or $\bar{U}V$ irradiation. Flash chromatography was performed with Merck silica gel 60 (0.040-0.063 mm). NMR spectra were recorded on Varian VXR-300, Unity 300, Unity 400, or Gemini-300 spectrometers in CDCl₃, unless otherwise stated. ¹H and ¹³C NMR signals are reported in ppm from tetramethylsilane, ¹⁹F NMR signals are reported in ppm from CFCl₃, and coupling constants are reported in hertz (Hz). IR spectra were recorded on a Perkin-Elmer Model 1800 or Mattson Galaxy 5020 FT-IR spectrophotometer. MS data were collected at 70 eV on a Finnigan MAT 4600, Mat TSQ-700, or VG Analytical Limited ZAB2-SE mass spectrophotometer, and computerized peak matching with perfluorokerosene as the reference was utilized for HRMS. Combustion analysis performed using a Perkin-Elmer Model 2400 elemental analyzer fell within $\pm 0.4\%$ of the calculated values. All reactions were run under an inert atmosphere. The organic extracts were dried over anhydrous MgSO4 or Na2-SO₄ prior to solvent removal on a rotary evaporator. Solvents and starting materials were purchased from Aldrich Chemical Co. with the following exceptions: N-t-Boc-L-Pro-OH was purchased from Bachem Bio-Science Inc. and Advanced ChemTech, hydrogen chloride gas was from AGA Burdox, N-t-Boc-glycine and N-t-Boc-2-amino-2-methylpropanoic acid were from Sigma Chemical Co., and Et₂O was from E.M. Science. The following compounds were prepared by literature methods: 2,6 24,16 27,6 28,6 and 7.20

NMR Determination of Enol Acetate Stereochemistry. The ¹H - [¹⁹F] NOE difference spectra were obtained with a Varian Unity 300 spectrometer using a pulse sequence based on the standard steady-state NOE difference pulse sequence. Since our spectrometer is a single broad-banded system, it was necessary to run these experiments in the "reverse" mode, that is, the ¹H decoupler was used as the observe transmitter and the broad-band transmitter as the ¹⁹F decoupler transmitter. Also, since this experiment requires a probe which is simultaneously tuned to both ¹H and ¹⁹F, a Varian 4-nucleus ¹H/ ¹⁹F/¹³C/³¹P Auto-NMR probe was used. The fluorine signals were irradiated during a 10 s preacquisition delay (not

Inhibition of Human Neutrophil Elastase. 3

optimized), and then a transient was acquired with the ¹⁹F decoupler transmitter off using an acquisition time of 1 s. This process was repeated until 32 transients were accumulated. The process was repeated with the ¹⁹F decoupler set far off resonance, and then the total procedure was repeated until 512-1024 transients were collected at each decoupler setting. The resulting FID's were subtracted, and the spectra obtained after Fourier transformation were displayed as the NOE difference spectra. Quantitation was estimated by dividing the integral of the enhanced signal by the integral of the same proton in the off-resonance spectrum.

In Vitro Evaluation. Ki determinations were conducted with partially purified HNE using previously described procedures.²¹ The K_i values reported for 20, 29, and 31, in the absence of added esterase, represent lower limits due to the possibility of small amounts of parent ketone being present as a contaminant. For those experiments involving added esterase, the assays were performed in the presence of 12.5 units of porcine liver esterase (Sigma Chemical Co., cat. no. E-3128) and the following concentrations of compound to be tested: 20-23, 66 nM; 29, 1.67 µM; 30, 133 nM; 31, 100 nM. The time course of the reaction was followed, and a K_i value was determined from the final rate (obtained after complete hydrolysis of the enol acetate). To rule out interference of the esterase with the elastase assay, or a significant spontaneous (i.e., nonenzymatic) hydrolysis rate of enol acetate, the following experiments were performed, (A) elastase plus elastase substrate; (B) elastase plus elastase substrate plus porcine liver esterase; and (C) elastase plus elastase substrate plus 20.

In Vivo Evaluation. The ability of compounds to inhibit HNE-induced pulmonary hemorrhage was examined in hamsters as previously described.^{6,22} Compound was administered orally (po) 30 min prior to intratracheal (it) instillation of 25 μg of HNE. The animals were sacrificed 1 h later, and the amount of hemorrhage in the bronchoalveolar lavage (BAL) fluid was determined. Bronchoalveolar lavage was performed by exposing and cannulating the trachea and gently instilling and withdrawing a single volume of saline (0.04 mL/g) three times. Hemorrhage was quantitated by determining the hemoglobin content in the BAL fluid using a spectrophotometric assay.23 The data was evaluated using a one-way analysis of variance (ANOVA) followed by a Dunnett's multiple comparison test to determine if compound-treated groups were different from vehicle-treated groups ($p \le 0.05$ was the criterion for statistical significance).

¹⁹F NMR-Monitored Conversion Studies. The conversion of the enol acetates to the parent ketone was followed by ¹⁹F NMR using a Varian Unity 400 spectrometer. Samples were prepared in freshly obtained human blood plasma or appropriately prepared USP-simulated gastric or intestinal fluid at a concentration of ca. 1 mg/mL. A sealed D₂O capillary tube was inserted into the 5 mm NMR tube for "lock". Spectra were obtained at 37 or 50 °C at various time points, and the integrated signals were used to calculate the amount of each component at each time point.

HPLC Relative Retention Time Determination. The HPLC system employed a Waters 600E HPLC equipped with a Waters WISP 712 autosampler and an Applied Biosystems 757 absorbance detector (240 nm). Data was acquired and analyzed by a computer-automated laboratory system (CALS) supplied by Beckman. The retention time comparison of 1 and related compounds was performed on a Zorbax Rx column (150 \times 4.6 mm) with a mobile phase of acetonitrile/water (55/45) and a flow rate of 1 mL/min. Relative retention times for all inhibitors were as expressed relative to 1, whose retention time was designated as 1.00.

N-[(1,1-Dimethylethoxy)carbonyl]-L-valyl-N-[1-(meth-oxycarbonyl)-2-methyl-1-propenyl]-L-prolinamide (8). To a solution of N-t-Boc-L-valyl-L-proline (3.1 g, 0.01 mol) and NMM (1.10 mL, 0.01 mol) in CH₂Cl₂ (100 mL) at -20 °C was added IBCF (1.26 mL, 0.01 mol) at -20 °C. After stirring for 20 min, an additional equivalent of NMM (1.10 mL, 0.01 mol) was added followed by the addition of 7^{20} (1.66 g, 0.01 mol) as a solid in one portion. The reaction was stirred at -20 °C for an additional 1 h and then allowed to warm to room tempera-

ture. The reaction mixture was then diluted with additional CH_2Cl_2 (50 mL) and washed with 1 N aqueous HCl (3 \times 50 mL), saturated aqueous NaHCO₃ (2×50 mL), and brine ($1 \times$ 50 mL). The resulting organic extract was dried and concentrated to afford 3.85 g (94.6%) of desired product 8 as a white foam: TLC R_f 0.45 (3:1 Et₂O:hexane); IR (KBr) 3412, 3308, 2974, 2876, 1714, 1701, 1641, 1508, 1437, 1390, 1367, 1309, 1286, 1236, 1170, 1091, 1043, 1016, 923, 879, 777, 750, 727, 657, 626, 584 cm⁻¹; ¹H NMR δ 8.19 (s, 1H, NH), 5.22 (d, 1H, J = 9.2 Hz, NH), 4.70 (dd, 1H, J = 7.8, 2.3 Hz, CH of Pro), 4.30 (app dd, 1H, J = 9.4, 6.5 Hz, α -CH of Val), 3.76-3.70 and 3.65-3.61 (pr m, 2H, CH₂N), 3.72 (s, 3H, OMe), 2.43 (m, 1H, β-CH of Val), 2.17-1.84 (m, 4H, CH₂CH₂), 2.09 (s, 3H, CH_3), 1.80 (s, 3H, CH_3), 1.44 (s, 9H, t-Bu), 0.99 (d, 3H, J = 6.8Hz, CH₃), 0.94 (d, 3H, J = 6.7 Hz, CH₃); ¹³C NMR δ 172.8, 169.3, 165.1, 155.7, 143.1, 121.3, 79.6, 77.4, 77.0, 76.5, 59.6, 56.8, 51.6, 47.7, 31.4, 28.3, 28.2, 26.7, 25.1, 22.0, 20.9, 19.4, 17.5; MS (CI/CH₄) m/z (rel intensity) 426 (MH⁺, 22), 370 (52), 326 (100); HRMS $C_{21}H_{35}N_3O_6$ (M⁺) calcd 426.2604, obsd 426.2603.

N-[(1,1-Dimethylethoxy)carbonyl]-L-valyl-N-[3,3,4,4,4pentafluoro-1-(1-methylethylidene)-2-oxobutyl]-L-prolin**amide** (9). To a -78 °C solution of 8 (3.8 g, 9.0 mmol) in Et₂O (100 mL) was added condensed pentafluoroethyl iodide (5.5 mL, 48.0 mmol). Methyllithium-lithium bromide complex (28.5 mL, 42.0 mmol) was added to the mixture at a rate which maintained an internal reaction temperature below -70 °C. The reaction mixture was stirred at -78 °C for 0.5 h, the cold bath removed, and stirring continued for 5 min. The mixture was poured into H_2O (100 mL), and the aqueous phase was acidified with 1 N HCl. The aqueous phase was extracted with additional Et₂O (100 mL), and the combined ethereal extracts were dried and concentrated to yield a crude yellow oil which was immediately flash chromatographed (3:1 Et₂O:hexane) to give 9 (2.6 g, 57%) as white foam: IR (KBr) 3433, 3302, 2976, 2937, 2879, 1714, 1687, 1635, 1510, 1444, 1392, 1369, 1321, 1284, 1221, 1199, 1174, 1045, 1016, 943, 881, 819, 800, 775, 746, 731, 680, 628, 586, 565 cm⁻¹; ¹H NMR δ 9.08 (s, 1 H, NH), 5.21 (d, 1 H, J = 9 Hz, NH), 4.73 (d, 1 H, J = ca. 8 Hz, CH ofPro), 4.30 (app dd, 1H, J = 9.1, 6.4 Hz, α -CH of Val), 3.77–3.74 and 3.64–3.58 (pr m, 2H, CH₂N), 2.49 (m, 1H, β -CH of Val), 2.11-1.83 (m, 4H, CH_2CH_2), 1.87 (d, 6H, J = 4.1 Hz, $2 \times$ CH₃), 1.44 (s, 9H, t-Bu), 0.98 (d, 3H, J = 6.8 Hz, CH₃), 0.93 (d, 3H, J = 6.7 Hz, CH₃); ¹³C NMR δ 173.7, 170.1, 155.7, 138.9, 125.6, 79.9, 77.4, 77.2, 77.1, 77.0, 76.6, 59.2, 56.8, 47.7, 31.2, 28.3, 25.9, 25.1, 20.7, 20.3, 19.4, 17.3; ¹⁹F NMR δ -82.32 (s, CF_3), -122.13 and -123.63 (AB quartet, J = 285 Hz, CF_2); MS (CI/CH₄) m/z (rel intensity) 514 (MH⁺, 23), 458 (100), 414 (33). Anal. $(C_{22}H_{32}F_5N_3O_5)$ C, H, N.

General Procedure I. Representative Removal of an N-t-Boc Protecting Group. N-L-Valyl-N-[3,3,4,4,4-pentafluoro-1-(1-methylethylidene)-2-oxobutyl]-L-prolinamide, Hydrochloride Salt (10). Into a stirred solution of 9 (0.50 g, 0.98 mmol) in EtOAc (20 mL) cooled in an ice-water bath was bubbled HCl gas for 4 min. The reaction mixture was then stoppered with a drying tube and allowed to warm to ambient temperature with stirring. After 1 h, the reaction mixture was concentrated, azeotroped with CCl₄, and placed under a high vacuum to give 10 (440 mg, 100%) as a white powder: mp 143-145 °C; IR (KBr) 3431, 3173, 2972, 2885, 2629, 1718, 1643, 1597, 1506, 1446, 1398, 1375, 1352, 1321, 1223, 1201, 1140, 1099, 1057, 993, 949, 939, 898, 887, 844, 815, 744, 729, 682, 592, 565 cm⁻¹; ¹H NMR & 9.22 (s, 1H, NH), 8.33 (br s, 2H, NH₂), 4.89 (m, 1H, CH of Pro), 3.60 (m, 1H, α-CH of Val), 3.79-3.98 (pr m, 2H, CH₂N), 2.23-1.79 (m, 5H, β -CH of Val and CH₂CH₂), 1.92 (app d, 6H, J = 2.2 Hz, 2 \times CH₃), 1.11 (d, 6H, J = 5.7 Hz, 2 × CH₃); ¹³C NMR δ 171.1, 168.2, 142.8, 125.3, 77.4, 77.2, 77.0, 76.6, 60.0, 57.8, 48.3, 30.1, 28.5, 25.2, 21.6, 20.7, 18.6, 18.0; $^{19}{\rm F}$ NMR δ -82.23 (s, CF_3), -120.95 and -123.30 (AB quartet, J = 291 Hz, CF₂); HRMS $C_{17}H_{24}F_5N_3O_3$ (M⁺) calcd 414.1816, obsd 414.1833.

General Procedure II. Representative Coupling with 4-(4-Morpholinylcarbonyl)benzoic Acid. N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-[3,3,4,4,4-pentafluoro-1-(1-methylethylidene)-2-oxobutyl]-L-prolinamide (4). To a stirred suspension of 4-(4-morpholinylcarbonyl)benzoic acid

(0.30 g, 1.25 mmol) and benzyltriethylammonium chloride (1 mg, 0.004 mmol) in 1,2-dichloroethane (25 mL) was added thionyl chloride (0.1 mL, 1.25 mmol), and the reaction mixture was heated at reflux. After 2.5 h the reaction mixture was allowed to cool to room temperature and concentrated in vacuo. The residue was then azeotroped with CCl₄ and placed under vacuum to give the acid chloride as a light orange oil (quantitative) which was used without further purification. In a separate flask, a stirred solution of 10 (400 mg, 1.0 mmol) in CH_2Cl_2 (20 mL) was cooled to -20 °C. NMM (0.45 mL, 4.0 mmol) was added and immediately followed by the dropwise addition of the acid chloride in CH_2Cl_2 (5 mL) at such a rate as to maintain the internal reaction temperature at -10 °C or less. After the addition was complete, the reaction mixture was allowed to warm to room temperature. After 1.5 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (50 mL) and washed with 1 N aqueous HCl (2 \times 30 mL), saturated aqueous NaHCO₃ (2 \times 30 mL), and brine (1 \times 25 mL). Drying and concentration afforded crude 4 (476 mg). The crude yellow oil was flash chromatographed (1:27 MeOH:CH2- Cl_2) to give 4 (281 mg, 50%) as a white foam: ¹H NMR δ 8.87 (s, 1H, NH), 7.87 (d, 2H, J = 8.4 Hz, aryl), 7.49 (d, 2H, J = 8.4Hz, aryl), 6.86 (d, 1H, J = 8.9 Hz, NH), 4.85 (dd, 1H, J = 8.6, 6.6 Hz, α -CH of Val), 4.70 (dd, 1H, J = 7.9, 2.2 Hz, CH of Pro), 3.94-3.37 (m, 10H, $2 \times \text{NCH}_2\text{CH}_2\text{O}$ and NCH_2 of Pro), 2.48 (m, 1H, β -CH of Val), 2.13 (m, 4H, CH₂CH₂), 1.90 (d, 6H, J =6.6 Hz, $2 \times CH_3$, 1.06 (d, 3H, J = 6.8 Hz, CH_3), 1.01 (d, 3H, J = 6.7 Hz, CH₃); ¹³C NMR δ 172.8, 169.9, 169.2, 166.4, 140.2, 138.6, 135.1, 127.39, 127.34, 127.3, 127.2, 125.4, 77.4, 77.1, 76.9, 76.5, 66.7, 59.3, 55.9, 47.9, 47.8, 42.5, 31.5, 26.2, 24.9, 20.8, 20.3, 19.4, 17.6; ¹⁹F NMR δ -82.29 (s, CF₃), -121.93 and -123.34 (AB quartet, J = 285 Hz, CF₂); MS (CI/CH₄) m/z (rel intensity) 631 (MH⁺, 100), 315 (92); HRMS C₂₉H₃₅F₅N₄O₆ (M⁺) calcd 631.2555, obsd 631.2576.

[2-(Methoxymethylamino)-1,1-dimethyl-2-oxoethyl]carbamic Acid, 1,1-Dimethylethyl Ester (12). N-t-Boc-2amino-2-methylpropanoic acid (11) (5.1 g, 25.2 mmol) was dissolved in CH_2Cl_2 (50 mL), and NMM was added (2.76 mL, 25.1 mmol). The mixture was cooled to -22 °C, and IBCF (3.25 mL, 25.1 mmol) was added. The mixture was stirred for 20 min followed by the addition of N.O-dimethylhydroxylamine hydrochloride (4.85 g, 49.7 mmol) and NMM (5.4 mL, 49.1 mmol). The mixture was stirred at -22 °C for 1 h, allowed to warm to room temperature, stirred for 1 h, poured into H₂O, and extracted with EtOAc. The combined organic extracts were washed with H₂O, dried, and concentrated. Purification by flash chromatography (1:4 EtOAc:hexane) gave 710 mg (11%) of 12 as a white solid: TLC $R_f 0.23$ (2:3 ethyl acetate: hexane); ¹H NMR δ 5.24 (m, 1H, NH), 3.69 (s, 3H, OCH₃), 3.21 (s, 3H, NCH₃), 1.55 (s, 6H, $2 \times$ CH₃), 1.44 (s, 9H, $3 \times$ CH₃); IR (KBr) 3323, 2982, 1726, 1635, 1523, 1365, 1271, 1253, 1163, 1076 cm⁻¹; MS (CI/CH₄) m/z (rel intensity) 247 (MH⁺, 21), 219 (17), 191 (41), 147 (100); HRMS $C_{11}H_{23}N_2O_4$ (MH⁺) calcd 247.1657, obsd 247.1656.

[3.3.4.4.4-Pentafluoro-1.1-dimethyl-2-oxobutyl]carbamic Acid, 1,1-Dimethylethyl Ester (13). Compound 12 (600 mg, 2.44 mmol) was dissolved in Et₂O (100 mL) and cooled to 78 °C. To the solution were added condensed pentafluoroethyl iodide (2.2 mL, 4.57 g, 18.7 mmol) and methyllithiumlithium bromide complex in Et₂O (12 mL, 1.5 M, 18.0 mmol). After 0.5 h, additional pentafluoroethyl iodide (2.2 mL) and methyllithium-lithium bromide complex (12 mL) were added. The reaction mixture was stirred at -78 °C for 1.5 h, poured into dilute aqueous KHSO₄, and extracted with Et₂O. The combined extracts were washed with saturated aqueous NaHCO₃ and H₂O and dried. Concentration followed by flash chromatography (1:4 EtOAc:hexane) gave 590 mg (79%) of 13 as a white solid: TLC $R_f 0.70$ (2:3 ethyl acetate:hexane); ¹H NMR δ 4.98 (br s, 1H, NH), 1.53 (s, 6H, 2 × CH₃), 1.43 (s, 9H, $3 \times CH_3$); ¹⁹F NMR δ -82.12 (s, CF₃), -118.04 (s, CF₂); IR (KBr) 3337, 2984, 1745, 1676, 1523, 1392, 1371, 1302, 1226, 1203, 1186, 1167, 1095 cm⁻¹; MS (CL/CH₄) m/z (rel intensity) 306 (MH+, 3), 278 (19), 250 (100), 230 (10), 206 (32); HRMS C11H17F5NO3 (MH+) calcd 306.1128, obsd 306.1132.

2-Amino-4,4,5,5,5-pentafluoro-2-methyl-3-pentanone, Hydrochloride Salt (14). Compound 13 (500 mg) was dissolved in EtOAc (100 mL) and treated as described in General Procedure I to yield 440 mg (99%) of 14 as a white solid: ¹H NMR δ 7.85 (m, 3H, NH₃⁺), 3.33 (s, 3H, CH₃), 2.51 (s, 3H, CH₃); ¹⁹F NMR δ -77.29 (s, CF₃), -119.21 (s, CF₂); IR (KBr) 2957, 2831, 1751, 1716, 1585, 1352, 1249, 1221 cm⁻¹; MS (CI/CH₄) *m/z* (rel intensity) 206 (MH⁺, 100), 188 (9), 166 (5), 87 (3); HRMS C₆H₉F₅NO (MH⁺) calcd 206.0604, obsd 206.0612.

N-[(1,1-Dimethylethoxy)carbonyl]-L-valyl-N-(3,3,4,4,4pentafluoro-1,1-dimethyl-2-oxobutyl)-L-prolinamide (5). N-t-Boc-L-Val-L-Pro-OH (785 mg, 2.5 mmol) was dissolved in CH₂Cl₂ (10 mL), and NMM (0.275 mL, 2.5 mmol) was added. The mixture was cooled to -22 °C, and IBCF (0.32 mL, 2.5 mmol) was added. The mixture was stirred for 20 min followed by the addition of 14 (400 mg, 1.66 mmol) and NMM (0.275 mL, 2.5 mmol). The mixture was stirred at -22 °C for 1 h, allowed to warm to room temperature, and stirred for 1 h. The reaction mixture was poured into 100 mL of H₂O and extracted with CH₂Cl₂. The combined extracts were dried and concentrated, and the crude product was purified by flash chromatography (3:1 EtOAc:hexane) to give 700 mg (84%) of 5 as a white solid: TLC $R_f 0.67$ (35:65 acetone:ethyl acetate); ¹H NMR δ 7.79 (br s, 1H, NH), 5.18 (d, J = 8.9 Hz, 1H, NH), 4.62 (dd, J = 8.0, 2.4 Hz, 1H, CH of Pro), 4.31 (dd, J = 9.6, 5.8 Hz, 1H, CH of Val), 3.70 (m, 1H, NCH2), 3.57 (m, 1H, NCH2), 2.42 (m, 1H, β-CH of Val), 2.15-1.70 (series of m, 4H, CH₂CH₂), 1.53 $(s, 3H, CH_3), 1.47 (s, 3H, CH_3), 1.01 (d, J = 6.9 Hz, 3H, CH_3 of$ Val), 0.94 (d, J = 6.9 Hz, 3H, CH₃ of Val); ¹⁹F NMR δ -82.03 (s, CF₃), -118.48 (s, CF₂); IR (KBr) 3437, 3289, 3018, 2980, 1746, 1706, 1679, 1623, 1501, 1436, 1234, 1173 cm⁻¹; MS (CI/ CH₄) m/z (rel intensity) 502 MH⁺, 18) 446 (100), 402 (70); HRMS C₂₁H₃₃F₅N₃O₅ (MH⁺) calcd 502.2340, obsd 502.2322. Anal. (C₂₁H₃₂F₅N₃O₅) C, H, N.

[2-(Methoxymethylamino)-2-oxoethyl]carbamic Acid, 1,1-Dimethylethyl Ester (16). To a solution of N-t-Boc-Gly-OH (15) (25.0 g, 0.15 mol) in CH₂Cl₂ (500 mL) were added DMAP (17.3 g, 0.15 mol), N,O-dimethylhydroxylamine hydrochloride (13.9 g, 0.15 mol), NMM (14.3 g, 0.15 mol), and EDC (27.3 g, 0.15 mol). The mixture was stirred overnight at room temperature, washed with aqueous HCl (10%), saturated aqueous NaHCO₃, and brine, and dried. Concentration gave 24.9 g (78%) of **16** as a white solid: R_f 0.19 (2:3 ethyl acetate: hexane); ¹H NMR δ 5.29 (m, 1H, NH), 4.08 (br d, J = 4.9 Hz, 2H, CH₂), 3.72 (s, 3H, OCH₃), 3.21 (s, 3H, NCH₃), 1.46 (s, 9H, 3 × CH₃); IR (KBr) 3288, 2976, 1716, 1658, 1543, 1404, 1365, 1282, 1251, 1182, 1167 cm⁻¹; MS (CL'CH₄) m/z (rel intensity) 337 ((M + 119)⁺, 4), 219 (MH⁺, 15), 191 (17), 163 (100), 119 (80); HRMS C₉H₁₉N₂O₄ (MH⁺) calcd 219.1344, obsd 219.1344.

(3,3,4,4,4-Pentafluoro-2-oxobutyl)carbamic Acid, 1,1-Dimethylethyl Ester (17). To a solution of 16 (5.0 g, 22.9 mmol) and pentafluoroethyl iodide (6.0 mL, 50.9 mmol) in Et₂O (500 mL) at -78 °C was added methyllithium-lithium bromide complex (32 mL, 1.5 M in Et₂O, 4.8 mmol). The mixture was stirred at -78 °C for 1 h, allowed to warm to -50 °C over 30 min, and poured into dilute aqueous KHSO₄. The product was extracted with Et₂O, washed with saturated aqueous NaHCO₃, and dried. Concentration followed by flash chromatography (2:3 EtOAc:hexane) gave 2.4 g (38%) of 17 as a white solid (5:4:1 mixture of ketone:hydrate:enol by ¹⁹F NMR): $R_f 0.71$ (3:1 ethyl acetate:hexane); ¹H NMR δ 6.53 (br d, J = 7.9 Hz, 0.1H, NH of enol), 6.17 (d, J = 8.6 Hz, 0.1H, CH of enol), 5.26 (m, 0.4H, NH of hydrate), 5.13 (m, 0.5H, CH of ketone), 4.41 (d, J = 5.3 Hz, 0.5H, CH₂ of ketone), 4.29 (br s, 0.1H, OH of enol), $3.51 (d, J = 5.9 Hz, 0.4H, CH_2 of hydrate)$, 1.52 (s, 0.3H, C(CH₃)₃ of hydrate), 1.48 (s, 1.2H, C(CH₃)₃ of enol), 1.45 (s, 1.5H, C(CH₃)₃ of ketone); ¹⁹F NMR δ -79.34 (s, CF₃ of hydrate), -82.06 (s, CF₃ of ketone), -83.58 (s, CF₃ of enol), -119.96 (s, CF₂ of enol), -123.76 (s, CF₂ of ketone), -125.31 (s, CF₂ of hydrate); IR (KBr) 3364, 3354, 2986, 2939, 1772, 1703, 1518, 1371, 1334, 1205, 1159, 1093 cm⁻¹; MS (CI/ CH₄) m/z (rel intensity) 278 (MH⁺, 22), 250 (20), 222 (100), 178(10)

N-[(1,1-Dimethylethoxy)carbonyl]-L-valyl-N-(3,3,4,4,4pentafluoro-2-oxobutyl)-L-prolinamide (18). Compound 17 (3.1 g) was dissolved in EtOAc (100 mL), cooled to 0 °C, and treated with HCl (gas) until saturation. The mixture was stirred at 0 °C for 0.5 h, concentrated to a volume of 10 mL. and poured into vigorously stirred hexane (150 mL). The amine hydrochloride (2.2 g, 92%) was collected by suction filtration and used without further purification. N-t-Boc-L-Val-L-Pro-OH (1.5 g, 4.7 mmol) was dissolved in CH₂Cl₂ (20 mL) and cooled to -22 °C, and NMM (1.53 mL, 14.1 mmol) and IBCF (0.59 mL, 4.7 mmol) were added. The mixture was stirred for 30 min at -22 °C, and the amine hydrochloride (1.0 g, 4.7 mmol) from above was added. The mixture was stirred at -22 °C for 1 h, allowed to warm to room temperature, stirred for 0.5 h, and poured into dilute aqueous HCl. The mixture was extracted with EtOAc, and the combined extracts were washed with saturated aqueous NaHCO₃ and dried. The solvent was removed, and the crude product was dissolved in EtOAc/hexane (3:1) and filtered through a plug of silica gel to yield 1.7 g (83%) of 18 as a white solid (5:10:1 mixture of ketone:hydrate:enol by ¹⁹F NMR): ¹⁹F NMR δ -79.70 (s, CF₃ of hydrate), -82.61 (s, CF₃ of ketone), -84.21 (s, CF₃ of enol), -120.55 (s, CF₂ of enol), -124.23 (CF₂ of ketone), -127.50 (s, CF₂ of hydrate); IR (KBr) 3385, 2978, 1749, 1691, 1510, 1369, 1219, 1167 cm⁻¹; HRMS (MH⁺) calcd 474.2027, obsd 474.2028.

N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-(3,3,4,4,4-pentafluoro-2-oxobutyl)-L-prolinamide (6) and N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-[3,3,4,4,4pentafluoro-2-[[4-(4-morpholinylcarbonyl)benzoyl]oxy]-1-butenyl]-L-prolinamide (19). The N-t-Boc protecting group of 18 (0.60 g, 1.27 mmol) was cleaved as described in General Procedure I to give 0.52 g (100%) of the corresponding amine hydrochloride as a white solid, which was used (see below) without further purification. A stirred solution of 4-(4morpholinylcarbonyl)benzoyl chloride (1.40 mmol) and NMM (0.39 mL, 3.51 mmol) in CH₂Cl₂ (20 mL) was reacted with the above generated amine hydrochloride (0.48 g, 1.17 mmol) as described in General Procedure II. Purification by flash chromatography [gradient (25-45%) acetone in EtOAc] gave 305 mg (44%) of $\mathbf{6}$ as a white solid foam: TLC $R_f 0.25$ (2:3 acetone:EtOAc); initial ¹⁹F NMR (DMSO-d₆, CF₃ signals only) δ -77.86 (s, CF₃ of hydrated ketone), -81.10 (s, CF₃ of ketone), -82.06 (t, J = 3 Hz, CF₃ of enol); ratio of ketone:hydrated ketone:enol \approx 1:1.5:2. After standing for 6 days, the spectra for the DMSO- d_6 sample simplified due to the disappearance of ketone species (presumably due to the presence of a small amount of water in the solvent). The simplified spectra, showing a 4:1 ratio of enol to hydrated ketone, are detailed below.

6: ¹H NMR (DMSO- d_6) δ 9.84 (br d, 0.8H, J = 10.3 Hz, Gly NH of enol species), 9.28 (s, 0.8H, OH, enol species), 8.63 (br d, 0.8H, Val NH of enol species), 8.62 (br d, 0.2H, Val NH of hydrate species), 8.04 (t, 0.2H, J = 6.3 Hz, Gly NH of hydrate species), 7.98–7.93 (m, 2H, $\frac{1}{2}$ aryl), 7.51–7.45 (m, 2H, $\frac{1}{2}$ aryl), 7.11 and 7.06 (pr s, 0.4H, 2 × OH of hydrate species), 6.64 (d, 0.8H, J = 10.2 Hz, vinyl of enol species), 4.55–4.34 (m, 2H, 2 × CH), 4.03–3.88 (m, 1H, $\frac{1}{2}$ CH₂N), 3.77–3.20 (m), 2.22–2.06 (m, 2H), 2.06–1.76 (m, 3H), 1.02–0.94 (m, 6H, 2 × CH₃); ¹⁹F NMR (DMSO- d_6) δ –77.86 (s, CF₃ of hydrate), -82.06 (t, J = 3 Hz, CF₃ of enol), -117.70 (q, J = 3 Hz, CF₂ of enol), -124.77 (s, CF₂ of hydrate); MS (CL/CH₄) m/z (rel intensity) 591 (MH⁺, 31), 317 (14), 289 (15), 275 (100), 218 (10), 70 (8). Anal. (C₂₆H₃₁F₅N₄O₆) C, H, N.

Also isolated was 99 mg (10%) of 19 as a white foam: TLC $R_f 0.23$ (2:3 acetone:EtOAc); ¹H NMR (DMSO- d_6) δ 10.66 (br d, 1H, J = 10 Hz, NH), 8.62 (br d, 1H, J = 8 Hz, NH), 8.13–8.06 (m, 2H, aryl), 7.94–7.88 (m, 2H, aryl), 7.64–7.58 (m, 2H, aryl), 7.52–7.42 (m, 3H, aryl and vinyl), 4.50–4.36 (m, 2H, 2 × CH), 4.02–3.88 (m, 1H, ¹/₂CH₂N), 3.76–3.14 (m, 17H), 2.23–1.74 (m, 5H), 0.99 (d, 3H, J = 6.8 Hz, CH₃), 0.97 (d, 3H, J = 6.8 Hz, CH₃); ¹⁹F NMR (DMSO- d_6) –82.64 (s, CF₃), -116.66 (s, CF₂); MS (CI/CH₄) m/z (rel intensity) 808 (MH⁺, 12), 788 (4), 591 (4), 414 (22), 317 (35), 305 (100), 275 (24), 238 (27), 218 (81); HRMS C₃₈H₄₃F₅N₅O₉ (M⁺) calcd 808.2981, obsd 808.2972.

General Procedure III. Synthesis of *E*-Enol Acetate Derivatives from Pentafluoroethyl Ketone 1. (*E*)-*N*-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-*N*-[2-(acetyloxy)-3,3,4,4,4-pentafluoro-1-(1-methylethyl)-1-butenyl]-L-prolinamide (20). To a stirred solution of 1 (2.00 g, 3.16 mmol), Et_3N (0.66 mL, 4.74 mmol), and DMAP (0.77 g, 6.32 mmol) in CH_2Cl_2 (8 mL) cooled to -20 °C (dry ice-CCl₄ bath) was added acetic anhydride (0.89 mL, 9.48 mmol) dropwise over a 5 min period. After 1.5 h at -20 °C, the reaction mixture was diluted with CH₂Cl₂ (70 mL) and the organics were washed with 0.5 N aqueous HCl $(2 \times 50 \text{ mL})$ followed by 50 mL of a mixture of 0.5 N aqueous HCl-brine (1:9). Drying and concentration gave crude 20. Recrystallization from EtOAc-hexane gave 2.25 g (85%, two crops) of **20** as a white crystalline solid: mp 127–137 °C dec; TLC R_f 0.34 (1:9 acetone: EtOAc); ¹H NMR δ 8.02 (br s, 1H, NHC=C), 7.88-7.84 (m, 2H, 1/2 aryl), 7.51-7.46 (m, 2H, $\frac{1}{2}$ aryl), 6.85 (br d, 1H, J = 8.9 Hz, NH), 4.87 (dd, 1H, J = 6.3, 8.8 Hz, CH), 4.65 (dd, 1H, J = 2.6, 8.0 Hz, CH), 3.92-3.54 (m, 8H), 3.39 (br s, 2H), 2.73 (septet, 1H, J = 6.9Hz, CHC=C), 2.52-2.42 (m, 1H), 2.24 (s, 3H, COCH₃), 2.25-1.85 (m, 4H), 1.08 (d, 3H, J = 6.9 Hz, CH₃), 1.07 (d, 3H, J =6.7 Hz, CH₃), 1.05 (d, 3H, J = 6.8 Hz, CH₃), 1.01 (d, 3H, J =6.8 Hz, CH₃); ¹⁹F NMR δ -83.55 (s, CF₃), -116.50 (br s, CF₂); MS (CL/CH₄) m/z (rel intensity) 675 (MH⁺, 25), 359 (100), 317 (75), 262 (28), 230 (40), 210 (22), 70 (52). Anal. $(C_{31}H_{39}F_5N_4O_7)$ C, H, N.

(E)-N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-[3,3,4,4,4-pentafluoro-1-(1-methylethyl)-2-(1-oxopropoxy)-1-butenyl]-L-prolinamide (21). A solution of 1 (0.50 g, 0.79 mmol) in CH_2Cl_2 (2 mL) cooled to -20 °C was treated with Et₃N (0.16 mL, 1.19 mmol), DMAP (0.19 g, 1.58 mmol), and propionic anhydride (0.30 mL, 2.37 mmol) as described in General Procedure III. Purification by recrystallization from EtOAc gave 374 mg (69%) of 21 as a white solid: mp 138-144 °C dec; TLC R_f 0.35 (1:9 acetone: EtOAc); ¹H NMR δ 8.00 (br s, 1H, NHC=C), 7.88-7.84 (m, 2H, ¹/₂aryl), 7.52-7.46 (m, 2H, $\frac{1}{2}$ aryl), 6.85 (br d, 1H, J = 8.8 Hz, NH), 4.87 (dd, 1H, J =6.3, 8.8 Hz, CH), 4.65 (dd, 1H, J = 2.6, 8.0 Hz, CH), 3.92-3.53 (m, 8H), 3.40 (br s, 2H), 2.71 (septet, 1H, J = 6.9 Hz, CHC=C), 2.52 (q, 2H, J = 7.5 Hz, COCH₂), 2.50-2.40 (m, 1H), $2.24-1.85 (m, 4H), 1.22 (t, 3H, J = 7.5 Hz, CH_3), 1.08 (d, 3H, J = 7.5 Hz, CH_3)$ J = 6.9 Hz, CH₃), 1.07 (d, 3H, J = 6.5 Hz, CH₃), 1.05 (d, 3H, J = 6.8 Hz, CH₃), 1.01 (d, 3H, J = 6.74 Hz, CH₃); ¹⁹F NMR δ -83.57 (s, CF₃), -116.27 and -116.55 (AB quartet, J = 280Hz, CF₂); MS (CI/CH₄) m/z (rel intensity) 689 (MH⁺, 17), 414 (20), 373 (100), 317 (22), 77 (54), 75 (23), 70 (20). Anal. $(C_{32}H_{41}F_5N_4O_7)$ C, H, N.

(E)-N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-[3,3,4,4,4-pentafluoro-1-(1-methylethyl)-2-(2-methyl-1oxopropoxy)-1-butenyl]-L-prolinamide (22). A solution of 1 (0.50 g, 0.79 mmol) in CH_2Cl_2 (2 mL) cooled to -20 °C was treated with Et_3N (0.16 mL, 1.19 mmol), DMAP (0.19 g, 1.58 mmol), and isobutyric anhydride (0.39 mL, 2.37 mmol) as described in General Procedure III. Purification by recrystallization from EtOAc gave 303 mg (54%) of 22 as a white solid: mp 135-142 °C dec; TLC Rf 0.34 (1:9 acetone:EtOAc); ¹H NMR δ 7.98 (br s, 1H, NHC=C), 7.89–7.84 (m, 2H, $\frac{1}{2}$ aryl), 7.51-7.46 (m, 2H, $\frac{1}{2}$ aryl), 6.87 (br d, 1H, J = 8.8 Hz, NH), 4.87 (dd, 1H, J = 6.3, 8.8 Hz, CH), 4.65 (dd, 1H, J = 2.6, 8.1)Hz, CH), 3.94-3.55 (m, 8H), 3.40 (br s, 2H), 2.74 (septet, 1H, J = 7.0 Hz, COCH), 2.68 (septet, 1H, J = 6.9 Hz, CHC=C), 2.50-2.40 (m, 1H), 2.25-1.86 (m, 4H), 1.26 (d, 6H, J = 7.0Hz, $2 \times CH_3$), 1.09 (d, 3H, J = 6.9 Hz, CH₃), 1.07 (d, 3H, J =6.8 Hz, CH₃), 1.05 (d, 3H, J = 6.9 Hz, CH₃), 1.01 (d, 3H, J = 6.7 Hz, CH₃), ¹⁹F NMR δ -83.68 (s, CF₃), -116.16 and -116.66 (AB quartet, J = 282 Hz, CF₂); MS (CI/CH₄) m/z (rel intensity) 703 (MH⁺, 20), 387 (56), 317 (78), 290 (28), 230 (35), 91 (100), 89 (80), 71 (90), 70 (80). Anal. $(C_{33}H_{43}F_5N_4O_7)$ C, H, N.

(Z)-N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-[2-(acetyloxy)-3,3,4,4,4-pentafluoro-1-(1-methylethyl)-1-butenyl]-L-prolinamide (23). A stirred solution of 1 (0.50 g, 0.79 mmol), Et₃N (0.16 mL, 1.19 mmol), and DMAP (0.19 g, 1.58 mmol) in CH₂Cl₂ (2 mL) was heated to reflux and acetic anhydride (0.22 mL, 2.37 mmol) added dropwise. After 30 min, the reaction mixture was cooled to room temperature, diluted with CH₂Cl₂ (45 mL), and washed with 0.5 N aqueous HCl (2 \times 35 mL) followed by 25 mL of a mixture of 0.5 N aqueous HCl-brine (1:9). Drying and concentration gave crude 23. Purification by flash chromatography (EtOAc) followed by recrystallization from Et₂O gave 49 mg of 23 (containing ca. 5% 20 as a contaminant) as a white solid: TLC R_f 0.17 (EtOAc); ¹H NMR δ 7.96 (br s, 1H, NHC=C), 7.89–7.83 (m, 2H, $^{1}\!_{2}aryl$), 7.53–7.46 (m, 2H, $^{1}\!_{2}aryl$), 6.78 (br d, 1H, J = 8.7 Hz, NH), 4.84 (dd, 1H, J = 6.6, 8.8 Hz, CH), 4.61 (dd, 1H, J = 2.6, 8.0 Hz, CH), 3.97–3.53 (m, 8H), 3.41 (br s, 2H), 3.13 (septet, 1H, J = 6.7 Hz, CHC=C), 2.50–2.39 (m, 1H), 2.20–2.03 and 2.01–1.87 (pr m, 4H), 2.13 (s, 3H, COCH₃), 1.11 (d, 6H, J = 6.7 Hz, 2 \times CH₃), 1.06 (d, 3H, J = 6.7 Hz, CH₃), 1.02 (d, 3H, J = 6.7 Hz, CH₃); ¹⁹F NMR δ –84.73 (t, J = 3 Hz, CF₃), -113.63 (br s, CF₂); MS (CI/CH₄) m/z (rel intensity) 675 (MH⁺, 17), 635 (16), 385 (100), 121 (30).

General Procedure IV. Synthesis of E-Enol Acetate Derivatives from Trifluoromethyl Ketones. (E)-N-[(1,1-Dimethylethoxy)carbonyl]-L-alanyl-L-alanyl-N-[2-(acetyloxy)-3,3,3-trifluoro-1-(1-methylethyl)-1-propenyl]-Lprolinamide (25). To a stirred solution of 24 (1.00 g, 1.97 mmol) in acetonitrile (5 mL) cooled to -20 °C (dry ice-CCl₄ bath) was added acetic anhydride (0.56 mL, 5.90 mmol) followed immediately by DMAP (480 mg, 3.93 mmol). After 2 h, the reaction mixture was diluted with CH₂Cl₂ (75 mL) and washed with 0.5 N aqueous $HCl(2 \times 50 \text{ mL})$ followed by 50 mL of a mixture of 0.5 N aqueous HCl-brine (1:9). Drying and concentration gave crude 25. Purification by flash chromatography (85:15 EtOAc:hexane) gave 0.54 g (50%) of 25 as a white solid. A portion of 25 was recrystallized from Et_2O pentane to provide an analytical sample: mp 111-114 °C dec; TLC $R_f 0.35$ (EtOAc); ¹H NMR δ 8.44 (br s, 1H, NHC=C), 7.88 (br d, 1H, J = 6.7 Hz, NH), 5.29 (br d, 1H, J = 7.4 Hz, NH),4.94-4.82 (m, 1H, CH), 4.75 (dd, 1H, J = 2.8, 8.0 Hz, CH), 4.61-4.45 (m, 1H, CH), 3.79-3.68 and 3.68-3.57 (pr m, 2H, CH₂N), 2.70 (septet, 1H, J = 6.9 Hz, CHC=C), 2.36-1.96 (m, 4H), 2.23 (s, 3H, COCH₃), 1.44 (s, 9H, t-Bu), 1.33 (d, 3H, J = 6.8 Hz, CH₃), 1.24 (d, 3H, J = 6.8 Hz, CH₃), 1.00 (d, 3H, J =6.8 Hz, CH₃), 0.96 (d, 3H, J = 6.90 Hz, CH₃); ¹³C NMR δ 172.2, 171.9, 171.2, 167.9, 155.7, 139.9, 132.9 (q, J = 35.0 Hz), 119.9 $(q, J = 274.5 Hz, CF_3), 80.4, 49.5, 47.5, 46.2, 30.2, 28.3, 28.25,$ 27.9, 24.9, 20.1, 20.02, 19.96, 19.1, 19.0, 18.5; ¹⁹F NMR δ -66.04 (s, CF₃); IR (CHCl₃ film) 3428, 3293, 2980, 2936, 2878, 1788, 1670, 1630, 1460, 1370, 1333, 1244, 1219, 1179, 1141, 1117, 756 cm⁻¹; MS (CI/CH₄) m/z (rel intensity) 551 (MH⁺, 38), 495 (100), 453 (18), 452 (17), 340 (17), 309 (52), 284 (13), 70 (19). Anal. $(C_{24}H_{37}F_3N_4O_7)$ C, H, N.

(E)-N-(4-Morpholinylcarbonyl)-L-valyl-N-[2-(acetyloxy)-3,3,3-trifluoro-1-(1-methylethyl)-1-propenyl]-L-prolinamide (29). A solution of 27 (0.65 g, 1.36 mmol) in acetonitrile (4 mL) cooled to -20 °C was treated with acetic anhydride (0.38 mL, 4.07 mmol) and DMAP (332 mg, 2.72 mmol) as described in General Procedure IV. Purification by repeated flash chromatography (1:9 acetone: EtOAc) gave 43 mg (6%) of **29** as a white solid: TLC $R_f 0.33$ (15:85 acetone: EtOAc); ¹H NMR δ 8.12 (br s, 1H, NHC=C), 5.12 (br d, 1H, J = 8.5 Hz, NH), 4.68 (dd, 1H, J = 1.6, 7.7 Hz, CH), 4.52 (dd, 1H, J = 6.5, 8.5 Hz, NH), 3.92-3.79 (m, 1H, ¹/₂CH₂N), 3.75-3.59 (m, 5H, $1/_{2}CH_{2}N$ and $CH_{2}OCH_{2}$), 3.49-3.31 (m, 4H, $CH_{2}NCH_{2}$), 2.71 (septet, 1H, J = 6.9 Hz, CHC=C), 2.55-2.43 (m, 1H), 2.25 (s, 3H, COCH₃), 2.16–1.81 (m, 4H), 1.05 (d, 3H, J = 6.8 Hz, CH₃), 1.04 (d, 3H, J = 7.0 Hz, CH₃), 1.01 (d, 3H, J = 6.8 Hz, CH₃), 0.96 (d, 3H, J = 6.6 Hz, CH₃); ¹⁹F NMR δ -67.33 (s, CF₃); MS (CI/CH₄) m/z (rel intensity) 521 (MH⁺, 59), 501 (10), 461 (17), 337 (10), 309 (68), 213 (100), 185 (22), 114 (10), 85 (10), 84 (15), 70 (12); HRMS C₂₃H₃₆F₃N₄O₆ (MH⁺) calcd 521.2587, obsd 521.2603

(E)-N-[4-(4-Morpholinylcarbonyl)benzoyl]-L-valyl-N-[2-(acetyloxy)-3,3,3-trifluoro-1-(1-methylethyl)-propenyl]-L-prolinamide (30). A solution of 28 (744 mg, 1.28 mmol) in acetonitrile (3.5 mL) cooled to -20 °C was treated with acetic anhydride (0.36 mL, 3.83 mmol) and DMAP (312 mg, 2.55 mmol) as described in General Procedure IV. Purification by flash chromatography (1:9 acetone:EtOAc) followed by recrystallization from EtOAc-hexane gave 300 mg (38%) of **30** as fine white needles: mp 121–129 °C dec; TLC R_f 0.34 (15:85 acetone:EtOAc); ¹H NMR δ 8.01 (br s, 1H, NHC=C), 7.89– 7.84 (m, 2H, ¹/₂aryl), 7.51–7.46 (m, 2H, ¹/₂aryl), 6.83 (br d, 1H, J = 8.8 Hz, NH), 4.87 (dd, 1H, J = 6.3, 8.7 Hz, CH), 4.67 (dd, 1H, J = 2.4, 8.0 Hz, CH), 3.93–3.52 (m, 8H), 3.40 (br s, 2H), 2.72 (septet, 1H, J = 6.9 Hz, CHC=C), 2.55–2.45 (m, 1H), 2.25 (s, 3H, COCH), 2.23–2.02 (m, 3H), 1.99–1.85 (m, 1H), 1.07 (d, 3H, J = 6.9 Hz, CH₃), 1.06 (d, 3H, J = 6.9 Hz, CH₃), 1.05 (d, 3H, J = 6.9 Hz, CH₃), 1.01 (d, 3H, J = 6.7 Hz, CH₃); ¹⁹F NMR δ -67.30 (s, CF₃); MS (CI/CH₄) m/z (rel intensity) 625 (MH⁺, 90), 414 (17), 309 (100), 86 (35), 85 (38). Anal. (C₃₀H₃₉F₃N₄O₇) C, H, N.

(E)-N-[4-[[[(4-Chlorophenyl)sulfonyl]amino]carbonyl]benzoyl]-L-valyl-N-[2-(acetyloxy)-3,3,3-trifluoro-1-(1methylethyl)-1-propenyl]-L-prolinamide (31). To a stirred solution of 2 (687 mg, 1.00 mmol) in pyridine (3.5 mL) cooled to 0 °C (ice-water bath) was added acetic anhydride (0.94 mL, 10.00 mmol) dropwise. After 24 h at 0 °C, the reaction mixture was diluted with CH_2Cl_2 (100 mL) and washed with 0.5 N aqueous HCl $(2 \times 50 \text{ mL})$ followed by 50 mL of a mixture of 0.5 N aqueous HCl-brine (1:9). Drying and concentration gave crude 31. Purification by flash chromatography [gradient (0-0.5%) of acetic acid in EtOAc] gave 463 mg (49%) of 31 as a white solid foam: TLC $R_f 0.38$ (0.5:99.5 acetic acid:EtOAc); ¹H NMR δ 10.08 (br s, 1H, NHSO₂), 8.06 (d, 2H, J = 8.0 Hz, aryl), 7.87 (br s, 1H, NHC=C), 7.77 (d, 2H, J = 7.8 Hz, aryl), 7.65 (d, 2H, J = 7.8 Hz, aryl), 7.51 (d, 2H, J = 8.0 Hz, aryl), 7.05 (br d, 1H, J = 7.3 Hz, NH), 4.92 (dd, 1H, J = 6.7, 7.8 Hz, CH), 4.65 (dd, 1H, J = 1.8, 7.3 Hz, CH), 3.96-3.83 (m, 1H, $^{1}/_{2}CH_{2}N$), 3.76-3.65 (m, 1H, $^{1}/_{2}CH_{2}N$), 2.71 (septet, 1H, J = 6.8 Hz, CHC=C), 2.46-2.34 (m, 1H), 2.25 (s, 3H, COCH₃), 2.25-1.89 (m), 1.07 (d, 3H, J = 6.7 Hz, CH_3), 1.03 (d, 3H, J =6.8 Hz, CH₃), 1.01 (d, 3H, J = 6.8 Hz, CH₃), 0.99 (d, 3H, J =6.9 Hz, CH₃); ¹⁹F NMR δ -67.00 (s, CF₃); MS (CI/CH₄) m/z (rel intensity) 729 (MH⁺, 100), 709 (10), 669 (13), 518 (25), 309 (100), 212 (10), 70 (28). Anal. (C₃₂H₃₆ClF₃N₄O₈S·1H₂O) C, H, N.

References

- (a) Pulmonary Emphysema, the Rationale for Intervention. Ann. N. Y. Acad. Sci. Volume 624; Weinbaum, G., Krell, R. D., Giles, R. E., Eds.; The New York Academy of Sciences: New York, 1991; pp 1-370. (b) Pulmonary Emphysema and Proteolysis; Taylor, J. C., Mittman, C., Eds.; Academic Press, Inc.: New York, 1987; pp 1-550. (c) Janoff, A. Elastase and Emphysema. Current Assessment of the Protease-Antiprotease Hypothesis. Am. Rev. Respir. Dis. 1985, 132, 417-433.
- (2) (a) Suter, S.; Schaad, L.; Roux, L.; Nydegger, V. E.; Waldvogel, F. A. Granulocyte Neutral Proteases and Pseudomonas Elastase as Possible Causes of Airway Damage in Patients with Cystic Fibrosis. J. Infect. Dis. 1984, 149, 523-531. (b) Jackson, A. H.; Hill, S. L.; Afford, S. C.; Stockley, R. A. Sputum Soluble Phase Proteins and Elastase Activity in Patients with Cystic Fibrosis. J. Respir. Dis. 1984, 65, 119-124.
- (3) Merritt, T. A.; Cochrane, C. G.; Holcomb, K.; Bohl, B.; Hallman, M.; Stayer, D.; Edwards, D.; Gluck, L. Elastase and α₁PI Proteinase Inhibitor Activity in Tracheal Aspirates During Respiratory Distress Syndrome. J. Clin. Invst. 1983, 72, 656-666.
- (4) (a) Ekerot, L.; Ohlsson, K. Interactions of Granulocyte Proteases with Inhibitors in Rheumatoid-Arthritis. Adv. Exp. Med. Biol. 1984, 167, 335-344. (b) Bonney, R. J.; Smith, R. J. In Advances in Inflammation Research; Otterness, I., et al., Eds.; Raven Press: New York, 1986; Vol. II.
- Edwards, P. D.; Berstein, P. R. Synthetic Inhibitors of Elastase. Med. Res. Rev. 1994, 14, 127-194 and references cited therein.
 (6) Angelastro, M. R.; Baugh, L. E.; Bey, P.; Burkhart, J. P.; Chen,
- (6) Angelastro, M. R.; Baugh, L. E.; Bey, P.; Burkhart, J. P.; Chen, T.-M.; Durham, S. L.; Hare, C. M.; Huber, E. W.; Janusz, M. J.; Koehl, J. R.; Marquart, A. L.; Mehdi, S.; Peet, N. P. Inhibition of Human Neutrophil Elastase with Peptidyl Electrophilic Ketones. 2. Orally Active P_G-Val-Pro-Val Pentafluoroethyl Ketones. J. Med. Chem., in press.
- Skiles, J. W.; Fuchs, V.; Miao, C.; Sorcek, R.; Grozinger, K. G.; Mauldin, S. C.; Vitous, J.; Mui, P. W.; Jacober, S.; Chow, G.; Matteo, M.; Skoog, M.; Weldon, S. M.; Possanza, G.; Keirns, J.; Letts, G.; Rosenthal, A. S. Inhibition of Human Leukocyte Elastase (HLE) by N-Substituted Peptidyl Trifluoromethyl Ketones. J. Med. Chem. 1992, 35, 641-662.
 Doherty, A. M.; Sircar, I.; Kornberg, B. E.; Quin, J., III; Winters,
- (8) Doherty, A. M.; Sircar, I.; Kornberg, B. E.; Quin, J., III; Winters, R. T.; Kaltenbronn, J. S.; Taylor, M. D.; Batley, B. L.; Rapundalo, S. R.; Ryan, M. J.; Painchaud, C. S. Design and Synthesis of Potent, Selective, and Orally Active Fluorine-Containing Renin Inhibitors. J. Med. Chem. 1992, 35, 2-14.
- Inhibitors. J. Med. Chem. 1992, 35, 2-14.
 (9) Williams, J. C.; Falcone, R. C.; Knee, C.; Stein, R. L.; Strimpler, A. M.; Reaves, B.; Giles, R. E.; Krell, R. D. Biological Characterization of ICI 200,880 and ICI 200,355, Novel Inhibitors of Human Neutrophil Elastase. Am. Rev. Respir. Dis. 1991, 144, 875-883.

- (10) The P₁, P₂, P₃, and S₁ nomenclature has been described in: Schecter, I.; Berger, A. On the Size of the Active Site in Proteases. I. Papain. *Biochem. Biophys. Res. Commun.* 1967, 27, 157-161.
- Gassman, P. G.; O'Reilly, N. J. Nucleophilic Addition of the Pentafluoroethyl Group to Aldehydes, Ketones and Esters. J. Org. Chem. 1987, 52, 2481-2490.
 Nahm, S.; Weinreb, S. M. N-Methoxy-N-Methylamides as Ef-
- (12) Nahm, S.; Weinreb, S. M. N-Methoxy-N-Methylamides as Effective Acylating Agents. *Tetrahedron Lett.* 1981, 22, 3815-3818.
- (13) Two enol trifluoroacetate derivatives of prolyl trifluoromethyl ketones have recently been reported as products in the reaction of certain N-acylprolines with trifluoroacetic anhydride; see: Kawase, M.; Miyamae, H.; Narita, M.; Kurihara, T. Unexpected Product from the Dakin-West Reaction of N-Acylprolines using Trifluoroacetic Anhydride: A Novel Access to 5-Trifluoromethyloxazoles. Tetrahedron Lett. 1993, 34, 859-862.
- (14) (a) The β -lactones presumably arise from [2 + 2] cycloaddition of ketene (generated *in situ*) to the electrophilic ketone; see: Pommier, A.; Pons, J.-M. Recent Advances in β -Lactone Chemistry. Synthesis 1993, 441-459 and references cited therein. (b) The following spectra (pertinent data only) were used to assign the structure of 26: ¹H NMR (CDCl₃) δ 3.62 (d, J = 16.8 Hz, $1/_2$ CH₂ of β -lactone for diast A), 3.44 (dq, $J_{\rm H,H} = 16.8$ Hz, $J_{\rm H,F} =$ 1.3 Hz, $1/_2$ CH₂ of β -lactone for diast A); 1³C NMR (CDCl₃) δ 44.8 (methylene carbon of β -lactone, 123.5 (q, J = 282 Hz, CF₃; 1³³C NMR [¹H decoupled, ¹⁹F coupled] (CDCl₃) δ 76.4 (q, J = 32.0Hz, quarternary carbon of β -lactone for diast A); 1⁹F NMR (CDCl₃) δ -75.96 (s, CF₃ of diast B), -76.06 (s, CF₃ of diast A); IR (CHCl₃ film) 1870, 1853 (β -lactone) cm⁻¹; MS (CUCH₄) *m/z* (rel intensity) 551 (MH⁺, 30), 509 (MH⁺ - ketene, 18), 495 (100), 453 (495 - ketene, 52), 309 (31). (15) Reaction of 1 under these conditions proceeded too slowly to be
- (15) Reaction of 1 under these conditions proceeded too slowly to be useful. Upon increasing the reaction temperature to room temperature, a reaction time greater than 24 h was required for completion and the E:Z selectivity fell to 5:1.
- (16) Peet, N. P.; Burkhart, J. P.; Angelastro, M. R.; Giroux, E. L.; Mehdi, S.; Bey, P.; Kolb, M.; Neises, B.; Schirlin, D. Synthesis of Peptidyl Fluoromethyl Ketones and Peptidyl α-Keto Esters as Inhibitors of Porcine Pancreatic Elastase, Human Neutrophil Elastase, and Rat and Human Cathepsin G. J. Med. Chem. 1990, 33, 394-407.

- (17) Angelastro, M. R.; Burkhart, J. P.; Bey, P.; Peet, N. P. Efficient Preparation of Peptidyl Pentafluoroethyl Ketones. *Tetrahedron Lett.* 1992, 33, 3265-3268.
- (18) Additional evidence that the ketone was indeed the product of enol acetate conversion in biological media was obtained for the transformation of 31 to 2 in simulated intestinal fluid. Mass spectral data were obtained following ¹⁹F NMR-monitored conversion of 31, and a molecular ion consistent with 2 was observed.
- (19) (a) Kuchar, M.; Kraus, E.; Jelinkova, M. Influence of Mobile Phase Composition on Evaluation of Lipophilicity by Partition Chromatography. J. Chromatogr. 1991, 557, 399-411. (b) Sabatka, J. J.; Minick, D. J.; Shumaker, T. K.; Hodgson, G. L., Jr.; Brent, D. A. Measurement of Lipophilicity by High Performance Liquid Chromatography. Comparison with Calculated Lipophilicity Values. J. Chromatogr. 1987, 384, 344-356. (c) Braumann, T. Determination of Hydrophobic Parameters by Reversed-Phase Liquid Chromatography: Theory, Experimental Techniques, and Application in Studies on Quantitative Structure-Activity Relationships. J. Chromatogr. 1986, 373, 191-225. (d) Baker, J. K.; Rauls, D. O.; Borne, R. F. Correlation of Biological Activity and High-Pressure Liquid Chromatographic Retention Index for a Series of Propanolol, Barbiturate, and Anthranilic Acid Analogues. J. Med. Chem. 1979, 1301-1306.
- (20) Schmidt, U.; Oehler, E. Dehydroamino Acids. 9. Simple Synthesis of α,β-Dehydroamino Acid Esters. Angew. Chem. 1977, 89 (5), 344-345.
- (21) Mehdi, S.; Angelastro, M. R.; Burkhart, J. P.; Koehl, J. R.; Peet, N. P.; Bey, P. The Inhibition of Human Neutrophil Elastase and Cathepsin G by Peptidyl 1,2-Dicarbonyl Derivatives. *Biochem. Biophys. Res. Commun.* 1990, 166, 595–600.
- Biophys. Res. Commun. 1990, 166, 595-600.
 (22) Durham, S. L.; Hare, C. M.; Angelastro, M. R.; Burkhart, J. P.; Koehl, J. R.; Marquart, A. L.; Mehdi, S.; Peet, N. P.; Janusz, M. J. Pharmacology of MDL 101,146: A Potent Orally Active Inhibitor of Human Neutrophil Elastase. J. Pharmacol. Exp. Ther. 1994, 270, 185-191.
- (23) Henry, J. B. In Clinical Diagnosis and Management by Laboratory Methods, 17th ed.; Todd, Sandord, Davidsohn, Eds.; W. B. Saunders Co.: Philadelphia, PA, 1984; pp 580-583.

JM940566W